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Abstract

Volcanoes appearing in SAR images of the surface of Venus are reliably detected and
located automatically by a system designed to handle general visual pattern recognition
problems. The system is based on classical techniques of linear filtering and supervised
statistical pattern classification and is trained for the specific task using a small num-
ber of examples provided by experts; a set of matched filters is synthesized from the
training examples using principal componwr;s  analysis and normalization techniques.
System-1evel issues such as (a) collecting reliable training examples, (b) training and
performance evaluation in the absence of a ground truth, (c) dimensioning the feature
space, are addressed in detail. Tests conduc!  ed on 4 images containing 163 volcanoes
show detection vs. false alarms performance that is comparable to that of trained
human observers.
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1 Introduction

1.1 Automatic analysis of planetary images

The volume of image data collected by spacecraft has reached a level that precludes the tradi-
tional approach of ‘manually’ examining each ccdlected  image. ‘The end-users - the scientists
— can no longer perform global or comprehensive analyses effectively, making automated
tools that locate features of interest in large image databases a necessity.

Our goal is to develop a general system for aiding scientists in locating patterns of interest
in image data. We envision such a system working in the following way. ‘J~he scientist will
specify what to look for simply by using a mouse to point and click on instances of the target
object in a number (the fewer, the better) of sample images. The tool will automatically
“learn” relevant characteristics of the target object by analyzing the examples provided by
the scientist, and will then search through a large database to find all instances of the target
object.

Such a tool would of course be applicable to many domains extending beyond remotely -
sensed image analysis – for example to applications such as medical image analysis, security
(face recognition), industrial inspection, and defense. The approach wc propose is based on
combining pattern recognition and machine leiuming  tcchniclues  to generate automatically
from training data a classifier that can locate and identify objects of interest in imagery.

In this paper we describe the prototype system that we have developed and we describe its
application to the problem of automatically loca<;ing  small volcanoes in the synthetic aperture
radar (S AR) imagery of Venus collcctcd  by NASA and JPL’s  Mage]lan  spacecraft [6]. This
work was conducted in collaboration with scie~tists  at Brown University’s l)epartrnent  of
Geological Sciences.

Locating small volcanoes in the Magellan SAR data is particularly suitable as a testbcd
domain for several reasons:

●

●

Over 30,000 images containing an estimated 106 small volcanoes (< 15km in diameter)
were returned by Magellan’s first mapping cycle. In fact, the Magellan mission has
resulted in a data set which is larger than that gathered by all previous p]anctary
missions combined. Planetary scientists are literally swamped with data, and it is clear
that manual examination and characterizi~tion of this many objects is prohibitive.

Understanding clustering characteristics and the global distribution of the volcanoes
is fundamental to understanding the regional and global geologic evolution of the
planet [I]. This study can potentially provide the data necessary to answer basic
questions concerning the geophysics of Venus, which is of particular interest since ge-
ologically,  Venus is Earth’s sister planet.
The Magellan application is the type of IJroblern that is increasingly encountered by
data analysts in remote-sensing, as well i~s in other ficlcls, as databases grow larger.
Quick access to specific features of intcres~ that are difficult to clcfine  directly is essen-
tial.
Geographical ‘objects’ present no well-defined visual features that are easily trans-
formed into geometrical tokens. Much of the work in visual pattern recognition and
object recognition in computer vision so :~ar has focused on man-made objects where
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well defined regular structures such as bolts, lines, and holes may be measured reliably
using general-purpose edge and line detectors.

● The Magellan  data set is the first truly digital planetary data set; anyone with a
desktop computer and a CD-ROM can easily access the entire set of data products.

1.2 Related

To emphasize that
suits on real-world
Image Cataloging

Work on the SKICAT Program

current supervised machine learning algorithms can yield significant re-
problems involving image diita,  we briefly review prior work on the Sky
and Analysis Tool (SKICAT)  problem [5, 4, 10], which involves finding

and classifying sky objects (stars, galaxies, etc, ) in digitized images of the Second Palomar
Observatory Sky Survey (POSS-11).

The l] OSS-ll survey consists of approximately 3,000 digitized photographic plates, each
consisting of 23,040 x 23, 040 16-bit pixels. I’he survey contains on the order of 108 sky
objects. Using public-domain image processing and region growing algorithms, attributes
defined by astronomers are measured for each object in a set of training images. The at-
tributes include intensity, area, ellipticity,  stati ;tical moments, and so forth. ‘1’raining  data
are constructed by asking astronomers to mau.lally  classify each of objects in the training
set. Decision-tree learning algorithms [5, 3, 9] are then applied to learn a mapping from
the measured attributes to the desired classification. For objects that are too faint for as-
tronomers to classify, the training data is obtained from higher resolution images or previous
small-scale surveys covering the corresponding portion of the sky. This allows the learning
algorithm to learn to classify objects that are LOO faint for the astronomers themselves to
classify by visual inspection.

The Sky Image Cataloging and Analysis ‘Tool (SKIC!AT) was developed in collabora-
tion with personnel from Caltech’s  Astronomy l)epartment.  We have been able to achieve
a classification accuracy rate of about 9470, well above the 90% rate required for reliable
scientific analysis. In addition to the tremendous savings in the required manpower, wc can
catalog objects that are at least one magnitude fainter than any objects cataloged in any
comparable sky survey to date. Since the majority of objects in an image are too faint
to be classified manually or by traditional hand-codecl  algorithms, the SKICAq’-generated
catalog will contain three times as many objects as would have been possible by manual
or traditional computational cataloging techniques. q’his is an excellent example of a ma-
chine learning approach that enabled scientists to automate a laborious procedure as well
as extract more data at no extra cost. Furthermore, the SKICAT classifier represents an
objective, examinable, repeatable approach to sky object classification, providing a uniform
classification througl]out  the entire catalog over the 108 sky objects.

1.3 Contents of the paper
An important factor in the success of SKICNJ’ and a fundamental cliflcrcnce  bctwccn  SKI-
CAT and the Magellan  problem is the existence in the astronomy field of a set of well-defined,
invariant features, which astronomers have worked on for decades.
other visual pattern recognition problems, no such “ready-made”

For Magellan and many
feature set is available.
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Therefore, to develop a general system for loci~ting patterns of interest in image data, we
must address the problem of finding good mappings from pixel space to features (feature syn-
thesis, or feature ‘learning’), as well as the problem of finding a good mapping from feature
space to class labels (classifier learning). By following a well-principled, domain-independent
approach to the feature synthesis problem, we hope to produce an algorithm that is effective,
easy to use, and portable with minimal effort to other planetary database exploration tasks
and ultimately to generic visual recognition problems of widespread interest, e.g., product
inspection (finding defects on parts coming out of a production line) and security (finding
human faces in cluttered scenes).

Because our goal is to develop a general systcm  for aiding scientists in locating patterns of
interest in image data, the prototype systcm wc have developed relies extensively on learning
from examples provided by the scientists. In scime domains (including Magc]lan  SAR),  the
noise level, image resolution, and other  factors make it impossible for the scientist to label
all objects of interest with 1009’o confidence. ‘l’his presents two orders of prob]cms: (a) the
training set is not completely reliable, and (b) there is no “ground truth” to evaluate the
performance of the algorithm. These issues are discussed in Section 3.

In Section 4 we define the overall structure of our prototype system. ‘1’hc systcm uscs a
focus of attention (FOA)  mechanism to identif)  quickly candidate rcgiom that may contain
the pattern of interest. The regions of interest ( ILOIS) selected by the focus of attention are
compared to the scientists’ examples to separate positive-examples from counter-examples.
Next, in the feature synthesis, or feature learning, stage (FL), the system uses principal com-
ponent analysis to learn relevant features from the examples. The learned features are used
to map the examples and counter-examples from pixel space to a lower-dimensional feature
space. Supervised classification algorithms are applied to learn the appropriate mappings
from feature space to class label (volcano vs not-volcano). The focus of attention, feature
synthesis, and classification algorithms are described in detail in Section 5.

The prototype system has been applied to a Iimitecl  set of Magcllan images. ‘1’hc perfor-
mance of the algorithm is quite promising and is, in fact, C1OSC to the performance level of
expert geologists. The performance evaluation is presented in Section 6.

Finally, in Section 7 we summarize the current status of our effort to develop a trainable
tool for locating patterns of interest in image data. We also discuss some of the open issues
that we intend to address in future research.

2 Magellan I m a g e r y

A fundamental objective of the iMagellan rnissiot) was to provide g]ohal mapping of the surface
of Venus. ‘1’he mapping was performed using synthetic aperture radar  (SAR) because of its
ability to penetrate the dense cloud cover surrounding Venus. A complete description of
the Magellan  SAR imaging system is given in [5], so here wc will only summarize the most
important characteristics:

● Wavelength / frequency: 12.6cm (2.385 GHz - S band)
● Incidence Angle: 15° - 45° (nominal)
● Range resolution: 120m - 360m
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● Azimuth resolution: 120m
● Pixel-spacing: 75m (full-resolution F-MIDR’s)

● Number of looks: 5- 16

Figure 1 shows a 30km x 30km area imaged by Magellan. This area, which is located
near (lat  30° N, lon 332° ), contains many small volcanoes. The volcanoes are illuminated
from the lower-left side of the image. Observe that the larger volcanoes in this figure have
the classic radar signature one would expect based on the topography; that is, the upward
sloping surface of the volcano in near-range (close to the radar) scatters more energy back
to the sensor than the surrounding flat plains ancl therefore appears bright. The downward
sloping surface of the volcano in far-range (away from the radar) scatters energy away from
the sensor and therefore appears dark. ‘1’oget her, these effects cause the volcano to appear
as a left-to-right bright-dark pair within a circular planimetric  outline. Near the center of
the volcanoes, there is usually a summit pit that appears as a dark-bright pair bccausc  the
radar energy reflects strongly from the far-range side of the summit pit back to the sensor,
but not from near-range. For small pits, however, the resolution may not be high enough to
separate the dark-bright pair.

The topography-induced features dcscribcd  above are the primary visual cues that geol-
ogists report using to locate volcanoes. However, there are a number of other, more subtle
cues. The apparent brightness of an area in a radar image depends not on] y on the macro-
scopic topography but also on the surface roughness relative to the radar wavelength. Thus,
if the flanks of a volcano have different roughr.ess properties than the surrounding plains,
the volcano may appear as a bright or dark (often circular) area instead of as a bright-dark
pair. Volcanoes may also appear as radial flow patterns, texture differences, or disruptions of
graben. (Graben are ridges or grooves in the planet surface that appear as bright “fracture”
lines in the radar imagery.)

3 Ground Truth

In the volcano-location problcm,  as in many pattern recognition applications, real ground
‘truth data may not exist. No one has ever been to Venus, and despite the fact that the
Magellan  data is the best imagery ever obtained of Venus, scientists cannot always determine
with 100?ZO certainty (due to factors such as image resolution, signal-to-noise level, etc. )
whether a particular image feature is indeed a volcano. Furthcrrnore,  for some domains
there may not even be a precise definition of the objects of interest.

Although one could envision using unsupervised learning paradigms that try to discover
structure in data, these methods are generally less well-developed and less reliable than the
corresponding supervised techniques, Thus, to lmovide  training data for a supervised systcm
in domains where real ground truth does not exist, one must carefully design a scheme for
collecting the training data in a manner that is consistent with the practical realities. ‘1’his
adds two important dimensions to the traditional classification learning problem:

1. Degrees of uncertainty need to be attached to the training examples; e.g., sure volcanoes
vs. marginal ones.
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Volcarrm  orr Venus

Figure 1: A 30km x 301( III  rTgioJI  froln tllc Magellan SAl{ data,  which contains a number
of small volcanoes. ‘1’he radar illumination is from the 10WW left, and the incidence angle is
approximately 40°.

2. Disagreement among laheiers  must be taken into account wl)cn evaluating system per-
formance; e.g., two scicnt.ists  may disagree 011 a (possibly significant) subset  of the
data.

The issue of attaching unccrtai]lty  labels to tJIc trainir)g cxanlplcs  is discussed in the next
subsection (Section 3.1 ); the implications for cvaluatirlg systcnl performance are considered
in the succeeding su Ix+ec.tion  (Section 11.2).

3.1 Attaching Uncertainty Labe]S to the Training Examples
TO simplify the procwss or Ilarvcsting  irai]lillg (Ia[a fro]]) tllc gcologistsl  we have developed a
software interface know]) as .1A l{tool (. JI’1, Adal)tivc l{mwgrlitioll ‘1’ool) [2]. tlAILtool permits
the scientists to quickly identify volcal)oes  usil~g  a point arid click graphical interface. The
scientists can indicate size infomlation  by fittir~~ c.irclcs  (or othm  shapes) around each region
of interest (ROI).  The probleln of Iahcling ullcrrtainty  is hal]dlcd  by asking the scientists to



give a subjective estimate of the probability that each object is actually a volcano. To avoid
the pitfalls of biased subjective estimates, we allow the fewest necessary degrees of freedom
in representing these probabilities. Through discussions with the scientists, we decided to
quantize the confidence attached to each ROI into four levels:

Category 1: definitely a volcano, with all primary visual cues present; this represents a
subjective probability in the range [0.95 -- 1.0].

Category 2: very likely to be a volcano, a non-essential visual cue is missing; subjective
probability in the range [0.75 – 0.95].

Category 3: possibly a volcano, at least two of the primary cues are missing; subjective
probability roughly in the range  [0.5 – 0.’;].

Category 4: only a pit is showing; likely to bc a volcano but more evidence is needed.

The scientists believe that this quantization  is both reasonable and appropriate. Note that
Class 3 and Class 4 are not strictly ordered in the sense that a three is not necessarily
more volcano-like than a four. They both indicate uncertain volcanoes, but the uncertainty
is generally due to different factors. l~igure 2 illustrates some typical volcanoes from each
category.

3.2 Performance Evaluation witlh Uncertain Ground Truth

- Given that the scientists cannot classify each ob,iect  with 100% confidence, how can we assess
how well our algorithms are performing? The basic idea is to measure the performance of
individual scientists with  respect to a “consensus ground truth”, where the consensus data
is generated by several scientists working togel her discussing the merits of each candidate
volcano (see Figure 3). The performance of an algorithm is considered to be satisfactory
if, compared to consensus ground truth, its performance is as good as that of an individual
scientist. The philosophy here is that if a single scientist is qualified to perform the analysis,
then it is sufficient if our algorithms perform comparably.

We evaluated the individual performance of two scientists in the following way. Each was
asked to label separately the volcanoes in a collection of four images using the subjective
probability categories described above. Approximately onc week later, the two scientists
jointly labeled the same images starting anew, i.e., they did not directly use their previ-
ous individual labelings. Figure 4 shows the confusion matrices comparing each scientist’s
labeling to the consensus.

The (i, j) entry in the confusion matrix is in~crpretcd  as the number of volcanoes labeled
i by an individual scientist that were in fact labeled j in the consensus. ‘1’bus, scientist A
labeled 5 volcanoes as category 2 that were listed in the consensus as category 1. l’he  last
row of the confusion matrix shows the number of volcanoes the scientist colnpletely  missed.
The last column shows the number of false alarms by the scientist. Note that the (O, O) entry
is O by definition. The confusion matrices can also be shown graphically as in the plots at
the right in Figure 4. Notice the significant number of of off-diagonal elements. We will
return to the scientists’ labeling performance in Section 6 when we evaluate the performance
of our algorithms.
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Sample Vokames

Cetegely  1:

Category 2

Cate$cq  3:

Categay  4:

Figure 2: A small selection of ROIS as labeled by the geologists. The category 1 ROIS
are believed by the geologists to almost certainly be true volcanoes. The category 2 ROIS
are also very likely to be true volcanoes but onc piece of evidence may be missing, e.g.,
a well-defined summit pit. The category 3 RC~Is have some volcanic features but there is
not enough evidence to say with confidence. The category 4‘s arc pits that appear to be
volcanoes but evidence of a circular out]inc  or bright-da,rk shading is absent.

4 Structure of the Algorithm

In this section, we provide an overview of the algorithm we have developed for finding small
volcanoes on Venus. As illustrated in Figure 5, tile algorithm operates in two distinct phases:
(1) the learning phase and (2) the production phase. An overview of the processing in each
phase is given here. The component blocks comprising each phase are described in detail in
Section 5.

4.1 Learning Phase

The main function of the learning phase is to develop models of the objects of interest
based on a number of examples and counter-cxarnplcs. ‘l’he learning phase should be generic
enough so that the system may be applied to other  detection tasks merely by supplying to it
a new set of examples without any need joI’ t~el)t’ogl.(ltnmittg.  ‘1’llrec components in the system
are constructed using learning from training data: the focus of attention (l?OA) component,
the feature learning (FL) component, and the classification learning (CL) component.

Generating the FOA component is the first processing step in the learning phase of the
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Figure  3: M;Lgclla  I) SI\ 1{ illlag(’  of \/rI]Iis Ivitll  CO]) SCIISLIS  ,qroLIIIcl tr~lt}l sl)owing
locations of sITIall  vol(aIIom.

s y s t e m .  ‘1’lIc l~OA is i]llc]l(lc(l 10 SCICC( (Illickl)  Calldi(latc  rrgiolls  ol i]]tcrw+t w i t h

size and

minimal
computational (’f[’orlj. [Jsc of I lIe 1+’()/1 rlilllillatcs  tl]c Ileed t o cxa[nillc ullintercsting  areas in
extensive detail. ‘]’]l(J  (:lllc]idil[,(~  ]()(,:l,t,ions id(l][ i{i(xl  I)y I,])(: 1~()/\ are tile]]  cllcckcd against, the
consensus grolllld-tr[lttl  list providc(l  hy tlie  (lf)[~]ili]]-(?x])(’]ts. Hascd o]] conlparison  with the
ground truth,  tl]c I!’OA ca]l(li(lat(s  iil(~’s(’l)il[ii,{((l  illio a s(1 ()( exa III])lm (actual instances of
tl]e clcsircd patter]])  i)[t(l  (:(~1111{(’I-(;x;IIIIl)l(s  (t;llltli(la  t(:s i lIaf (lo IIOi ill fact  co r re spond  to  the
object 0( itltc  rest ;).1S() (’/111  (’(1  li)l  S(’  illill’lll  S). ‘1’II(J  11’OA  i s  ~lis(l]ss(vl  ill d(:iai] in Sectioll  5.].

~’hc CXaIIll)]cs  aII([  (’O1llll(>l’-(:  X; IIII]Ji(:S  pIo(lII(:(xl  l)y L]I(’  ]“’OA a]gorill]!l)  iil’(!  (,llCI1 p r o c e s s e d
by a feature l(:i]r]lil~~ algoritlllll  ( IJI,). ‘1’llis  COIIIlmIIUII a[t(IIll)Is  to (Icriv(!  a set of relevant
features lmsml o!) lI1(J (JxallI])l(vi  allfl  (:(jllll( (:[-(~s;  tl]ll)l(s. Ill ollr ill)!  )l’oil(’11 (’il(ll  fvature  is a linear
c o m b i n a t i o n  or l,I]c I)ixcl  vii](l(~s  01 ii]  il]]iig(:  r(~giol). ‘]’11(  v{:(I,{)Is  ()[’  (ol]ll)i]l;ll,io]l”  cocfIicicnts
(which may he see,, eitl,cr  as ‘t,(’[t)pla((:s’ or its k(Irl)cls (JI Iill(’ar filh~rs)  arc gcllcrated  us ing
principal Collll)ollellt  i~I1/llySiS 01” t,llc  CXillIl\)lCS  (S(’ctio[l  5.2).

Measuring tllc f(’itti]t(~  Vill(l(’s  [or il l);]r{i(l]li]~  r(’giorl ()[ il)t(r(si ( 1{0[) is straightforward,
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2 5 9 8 9 9
3 1 2 20 8 31
4 1 2 5 26 13
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—

—
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Consensus
12340–

1 9 6 6 3 1
9 5 9 4 6
4 13 18 6 37
0 3 3 25 18
3 3 1 4 1 0 0

]rigure4: Sillgle  scientist  perfornlance  compare`~to  `consellslls'  grou1ld-trutl]. Labeling  con-
fu~on  matrices are shown for two scientists, A and B. ‘The matrices are tabulated on the left
hand side and are shown graphically on the right hand side. Notice the significant number
of off-diagonal labels.
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Figure 5: A block diagram showing the overall structure of our algorithm is illustrated
here. The algorithm naturally separates into two distinct phases: a learning phase and a
production phase. The main function of the learning phase is to develop models of the
objects of interest based on examples and counter-examples. The production phase then
applies these models to recognize objects of interest.

involving only a simple dot-product or cross-correlation of the ROI with each template, The
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feature measurements map an ROI from a high-dimensional pixel space to a much lower
dimensional feature space via projection. These lower dimensional feature vectors hopefully
encode the essential or relevant information contained in each ROI.

The final stage of the learning phase is the classification learning (CI.) component. The
purpose of this component is to construct a mapping from the space of features to a class
label. Based on the features associated with an ROI, the classifier declares the ROI to be
either: (1) an actual object of interest or (2) a false alarm. The classifier will compensate
for the FOA’S tendency to respond to weak candidates (high false alarm rate). We use a
quadratic classifier (also known as the Gaussian classifier) in the experiments that we present
in later sections. We have experimented with a number of other well-established supervised
learning methodologies including decision trees, neural networks, and kernel density estima-
tion methods with similar results. The particular choice of classifier technology is not critical
provided that the features are the right ones.

4.2 Production Phase

The production phase consists of examining a set of test images (or eventually a whole
database) to find all instances of the objects of interest. Using the FOA component, each
image is screened quickly to identify candidate locations of the objects of interest. For each
candidate ROI,  the feature templates learned by the FL box are used to measure feature
values. These values are then passed to the classification algorithm, which assigns the RO1
a class label (volcano vs non-volcano in the current application). Any ROIS designated by

“ the algorithm to be legitimate objects of interest can then be cataloged in a database and
made available for statistical and scientific analysis. (In some domains, human verification
of the objects may be desirable. )

5 Components of the Algorithm

In the previous section, we outlined the basic structure of our algorithm at the level of detail
shown in Figure 5. In this section, we will provide a more extensive description of each of the
algorithm components. Section 5.1 describes both the learning and. production phases of the
focus of attention algorithm. Section 5.2 discusses feature learning and feature measurement.
Classification is considered in Section 5.3.

5.1 Focus of Attention

The main goal of the FOA component is to detect  as many volcanoes as possible in a quick
and efhcient  pass. The input to the FOA are the full ‘raw’ images (eg, the SAR ima.gcs of the
surface of Venus); its output is in the. form of a discrete set of fixed-size image neighborhoods
containing an object of interest with reasonably high probability. The FOA is by design
intended to be aggressive; i.e., it is acceptable for the I!OA to generate a significant number
of false alarms, u’ long as it misses very few actual targets. 13y using the I?OA to identify
candidate regions, more sophisticated approaches to feature extraction and classification are
affordable, since the number of pixels under consideration is drastically reduced.
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The constraints upon the FOA (speed and low miss-rate) suggest that a linear filtering
operation should be used for this component, The problem of finding the best linear filter
to detect a deterministic signal in white noise is well-known. The solution is the matched
filter; i.e., the filter whose shape matches the shape of the signal one is trying to find. To
find a random signal with non-zero mean in white noise, the filter should be matched to the
mean of the signal.

Thus, for the volcano-location problem a matched filter is constructing by forming an
average template from all the volcanoes in the training set. Before. computing the average,
however, we first normalize each volcano with respect to the local DC and local contrast
level. Let v; denote the k x k pixels in a window around the i-th volcano rearranged as a
k2-dimensional  vector. Each region of interest in the training dataset is then nor~malized  as
follows:

V~–/L”~
+i .  — — .

krs
(1)

where p is the local DC level (mean of the pixels in Vi), a is the local contrast (standarcl
deviation of the pixels in Vi), and 1. is a k 2 x 1 vector of ones, The matched filter f is
constructed simply by averaging the normalized examples. Although the resulting filter is
guaranteed to have the zero DC property, we must renormalize  the contrast to one.

The matched filter response is computed as the normalized cross-correlation between
f and each image patch (i.e., each image patch is normalized as in Equation 1 prior to
computing the dot product with f). The response is equivalent to the statistical cross-
correlation between f and the image patch; thus, response values close to one indicate that
the image patch is strongly correlated with the filter. Substantial savings in the computation
of the cross-correlation can be achieved using separable kernel methods to approximate the
2-D kernel f as a sum of 1-D outer products.

The matched filter response image is thresholcled at a level determined from training
images. Nearby pixels that are above the threshold are clustered into a single candidate
location. Results on a typical image are shown in Figure 7. The FOA candidates are
displayed as boxes overlaid on image, while the ground truth locations are shown as circles.
Although there are quite a few false alarms, recall that the goal of the FOA component is to
achieve a low-miss rate while reducing the amount of data to be processed by later stages.
The FOA algorithm is successful in detecting all the volcanoes from Categories 1 and 2, but
misses a few from Categories 3 and 4.

We have experimented with several variations of the matched filter. One variation, which
we call the size-binned matched filter, attempts to account for size information. With this
approach, the training volcanoes are grouped into four size ranges based on the scientist-
fitted diameters. A separate matched filter is constructed for each size range. The candidate
locations identified by each matched filter are merged and consolidated into a master list of
candidates.

We also considered a version of the matched filter that takes into account the subjective
uncertainty of the scientists. This filter is constructed in the same way as the original FOA
scheme, except each training volcano is multiplied by the scientists subjective probability
when averaging. Provided the subjective probabilities are unbiased,. this method can be
shown to have useful asymptotic properties [7].
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Figure 6: Left: The matched filter contains )nany of the features that planetary geologists
report using when manually locating volcanoes. in particular, the matched filter encodes a
bright central spot corresponding to a volcanic summit pit and the left-to-right bright-dark
shading. Right: Response of the matched filter on the area shown in Figure  1. Bright  points
indicate a strong match — these will be selcctcxl as candidate locations.

5.2 Feature Synthesis

Determining features from examples is essential to developing a domain-independent algo-
rithm. The feature learning componept  uses cxalnples  generated by the l’OA algorithm to
synthesize a number of features to be used for classification. As ]nentioncd  before, these
examples are in the form of fixed-size image llcigllborhoods that wc call regions of interest
(ROIS). One must note right away that in the present application, generating features au-
tomatically is an underconstrained problem: tl]c dimcnsionality  of the space of all possible
features is much too high relative to the number of exaInplcs that arc available. ‘1’lle search
must therefore be restricted to a family of potentially USC(UI features; the choice of the fam-
ily is of course essential to the success of the application. Given the unstructured nature of
our data we have chosen to generate features using the classical tcchlli(~uc of projecting the
ROI onto a low dimensional subspace. Each feature is a coordinate in this space and may
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Figure 7: ‘1’hc output of tllc locus of attcntiolI  algorithn]  011 a typical ilnagc.  Circles show the
consensus grolllld  truth volcal)o  ]ocations, while I)OXCS show tl)c cwldidaic  regions selected by
the FOA.  ‘1’hl]s, circles wit]) boxes  arc dctcctcd  volcanoes. (Uircl(vi wi (llout, boxes  are missed
volcanoes and lmxcs without ci relcs arc false alarms. Sillm tllc l~OA acts as prcscreening  for
other stages, the cost, of a rnissml volcaI)o  is }Iigll  colnparcd  to a false alarll].

be obta ined  m a lillcar (.~)1-lll)ill;~tiol~  of tllc 1{01 I)ixcl valllcs; this is cqllivalcmt  to selecting
an ROI-size(l kcrnc! for carli i“(JaiIIrc  aIId coll~plltil]g  tile i]]]lcr  I)IWIIIC1  01’ tile 1{01 with the
kernel. Having sclcctcd this collll)lltat  iollal sllra(fegy. oi[r prol)let)l  is I1OW OIIe of determining
the dimension q 01 ttlc sllbs]m(c 01) ~vllicll  to l)rojcct a[ld lil~(lir)g  q I)asis vectors (i.e., the
appropriate kcrJlels) that) slM1) 11)(’ s(lbslmcu.

If OIIC takes a prol)al)il  istic Imi[)t  01’ vi(w, tl)c l<:\lll\lll(~I1-1.oi,\~  {rallsforl)] yields the ‘best’
subspacc  011 wllicll 1)() l)rojec( 111(’  (Iiltii. ‘1’llis  slll)sl)a(x~  is  Sl)iillll(’(1  I)y 1 II(J Iligllcst-cigenvalue
eigenvectors  0{ tllc (Iata covariancc  Il]atrix. ‘1’l~c  Iu II covariallce II]atrix Illllorturlately  cannot
be computed reliably fro]n tt~c Ilu]]ltx:r of cxanlplcs  wc typically I)avc available. However,
since we arc of)ly illtercstc(l  ill the lligll(~s(,-(:igcl~  v;~lll(!  cigcnvcctors,  tl)e approximate K - L



basis vectors can be found by the method of principal components. This technique has
been used already in visual pattern recognition, for example, by Turk and Pentland for face
recognition [8].

Despite its intuitive appeal, there are a number of arguments against using such a simple
image-based approach for recognition: most notably, it is not invariant with respect to
translation, rotation, scaling and direction of illumination. For the volcano problem these
limitations are not critical since the FOA algorithm ‘centers’ the volcanoes well, and the
volcanoes have a high degreee of rotational symmetry. However, for the general problem
these invariance issues must be addressed systematically and eventually resolved.

The principal components can be determined as follows. Each normalized example is
placed as a column in an n x m matrix X, where n is the number of pixels in each ROI and
m the number of examples (ROIS). Using the singular value decomposition, we can factor
X as follows:

x- = USVT
(2)

For notational convenience, we will assume nr is lCSS than n since  this is usually the case.
Then in Equation 2, U is an n x m matrix such that U7’U = I~x~, S is m x m and diagonal
with the elements on the diagonal (the singular values) in descending order-, and V is m x m
with V TV =  V VT  = Inx~. Notice that any column of X (equivalently, any ROI)  can be
written exactly as a linear combination of the columns of U. Furthermore, if the singular
values decay quickly enough, then the columns of X can be very closely approximated using
only linear combinations of the first few columns of U. That is, the first few columns of U
serve as an approximate basis for the entire set of examples in X.

The columns of U are, in fact, the principal component vectors which will serve in place
of the K-L vectors. These are shown in Figure 8 reshaped into ROIS. Notice that the first
ten or so exhibit structure, while the remainder appear very random. ~’his suggests that wc
should use a subspace  of dimension q = 10. ‘l’he singular values plotted in the figure ‘indicate
that 6 – 10 features capture most of the information in the examples.

Ideally, we would like to describe objects of interest using as few features as necessary.
Having a small number of features relative to the number of training examples improves the
likelihood that the classifier will not ovm-fit to the training data. We expect that a certain
number of features will be required in order to describe the natural variability of an object.
Any additional variability of the object due to spatial shifting, scaling, rotation, or noise
will increase the number of features required to produce a good representation. One might
mistakenly make the following argument: shifting has two degrees of freedom, scaling has one
d.o.f.,  and rotation has one d,o.f.,  therefore, encoding these variations should only require
four additional features. While this might be true if we were using very non-linear features,
it is definitely not true for the case where the features are restricted to be linear functions
of the pixels. Thus, the number of principal components needed can increase dramatically
in an attempt to encode these additional non-linear parameters. Wc arc currently working
on a method to “undo” or normalize with respect to these variations, but it is still in the
research stage. Fortunately, as we have already remarked, these issues are not critical for
the volcanoes problem,

Once we have determined the appropriate number q of features to use, we can calculate
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Figure  8: Upper left shows collection of volcanoes used for feature synthesk.  Upper right
shows principal components derived from the examples. Notice that the first 10 or so exhibit
structure while others look like random noise. Bottom: Singular values indicate importance
of each of the features for representing the examples. Rapid fall-off of singular values shows
that examples can be closely approximated using only a few principal components.

the feature values for an ROI as follows:

Y=[ul U2 . . . uq]Tx (3)

where x is the ROI reshaped as an n-dimensional vector of pixels and y is a q-dimensional
vector of features. The feature vectors y serve as the input to the classification algorithm.

A final point to note about the feature learning algorithm is that like the FOA algorithm,
the scientist’s subjective probabilities can be taken into account during training. Since the
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principal components are the eigenvectors of the sample covariance matrix, the subjective
probabilities are used to calculate a modified covariance matrix as follows:

2P = ‘=1 ~ (4)

~Pi
i=]

where pi is the probability that example xi corresponds to a true volcano. Note that this
formula also encompasses the deterministic labeling method in which each pi is simply equal
to 1. The probabilities can be taken into account directly in the matrix X by multiplying

rcolumn i by pi/pi where p is the denominator of Equation 4.

5.3 Classification

The problem of classifier training in supervised learning problems has been well-studied.
As we commented earlier, we believe that if the feature learning algorithm is working well,
then the choice of classifier is not critical, We used a quadratic (Gaussian) classifier for the
experiments reported in the next section, but we have also used decision trees, kernel density
estimation, etc. and obtained similar results.

Briefly, the quadratic classifier is the optimal classifier (in the J3ayes sense) if the class-
conditional probability densities of the feature vector y are multivariate  Gaussian, i.e., if

P(YIJ1) w ~(pl> a)

P(Yl~2) ‘“ ~(P2>  X2) (5)

Even if the Gaussian assumption does not strictly hold, the quadratic classifier usually
performs well provided the densities are unirnodal.  There are two common interpretations
of the algorithm, both of which are useful. The first interpretation is that the algorithm
estimates posterior probability densities of the two classes given the feature vector y. For
example, the class 1 posterior probability is estimated as:

p(q [y) = P(YILJJ1 )P(wl )

P(YI-4 )P(w ) + P(Yl~2)P(LJ2  )
(6)

where p(wl ) and p(u2 ) are the prior probabilities for each class. ‘1’raining the quadratic classi-
fier is particularly easy, since the class-conditional densities are completely determined from
the class mean and covariance matrix. Thus, we simply have to estimate these parameters
from the training data.

The other common interpretation of the quadratic classifier is as a nearest distance clas-
sifier, where the distance metric is the Mahalanobis distance:

‘i(Y) =  ( Y  –  
W)2’XJ1(Y –  

Pi) (7)

An unknown sample y is assigned to the class i for which &i(Y) is the smallest. As seen from
Equation 7, the minimum distance rule corresponds to using a quadratic hyper-surface to
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Fimnw 9: Illustration of the quadratic classifier in two dimensions. Volcanoes (+) and non-
volcanoes (o) are mapped from pixel space to a two-dimensional feature space. The quadratic
decision surface attempts to separate the samples in the feature space. Improved separation
can be obtained using a higher dimensional feature space. (We have found that using 6-10
dimensions works best.)

separate the two classes. A two-dimensional example illustrating the quadratic separating
surface is shown in Figure 9. The plotted points arc the first two SVD features measured
on the ROIS shown in Figure 7. Although the quadratic decision surface does a reasonable
job of separating the points, the results are much better if the ROIS are mapped to a six-
dimcnsional  space.

Both implementations of the algorithm can bc adjusted to be more or less aggressive.
Since in the first interpretation the algorithm declares class WI if the posterior probability of
this ciass exceeds a threshold, the algorithm can be made more aggressive by lowering the
threshold. By varying this threshold we can make the algorithm more or less aggressive in
declaring objects to be of class U1. For the second version, onc can simply imagine moving
the separating hyper-surface  closer to one class or the other to change the operating point.

6 Experimental Performance Results

In this section, we present the experimental results obtained using our algorithm to locate
small volcanoes in Magellan  SAR imagery. The pcrforrnancc  of the algorithm in the volcano-
Iocation  task is shown to be comparable to the performance of individual scientists.

The experiments were performed on four 1024 x 1024 images using a cross-validation
paradigm. That is, three images were used to train the algorithm, while the fourth image
was reserved for testing. This process was repeated four times with each image serving as
the test image. All results were scored relative to the consensus ground truth treating the
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subjective labels 1, 2, 3, and 4 as true volcanoes.
The figure of merit that we measure is the number of detections (true volcanoes identified)

versus the number of false alarms (non-volcanoes mistakenly identified as volcanoes) summed
over the four test images. In all the performance plots, detection and false alarm rates are
expressed as a percentage relative to the number of true volcanoes (163) in the four images.
Thus, the detection rate is bounded above by 100%, while the false alarm rate can be
arbitrarily large. The  use of percentages allows one to easily compare results across different
images and across different labeling strategies. For most of the algorithm variations we have
considered, there is a parameter that can be adjusted to make the algorithm more or less
aggressive in declaring volcanoes. Varying this parameter generates a curve comparable to
a standard ROC (receiver operating characteristic) curve.

As a basis for comparison (see Section 3.2), we evaluated the labeling performance of
three scientists, who are all familiar with the Magellan  data and with the appearance of
volcanoes in the data. The DFA point for each scientist is shown as a labeled asterisk in
Figure 10. Note that the z-axis  is logarithmic.

Figure 10 also shows the performance of the matched filter focus of attention algorithm
(solid line). The matched filter algorithm has one free ,parameter  (a threshold), which can
be adjusted to make the algorithm  more or less aggressive in declaring volcanoes. Since the
purpose of the 170A is to provide a low rate of missed volcanoes, the threshold was selected
to make the algorithm operate at the point (~ % 300%, d w 90%). At this operating point,
the matched filter has the following highly desirable feature: it detects all the Category 1
and Category 2 volcanoes. The only misses are of Category 3 and Category 4 volcanoes.

The performance of the size-binned matched filtering scheme of Section 5.1 was also
evaluated. The idea behind this experiment was to examine the effect of ignoring scale in-
formation in the original single-scale matched filter scheme. For the size-binned algorithm
however, it is difficult to obtain a performance curve because there are multiple thresholds —
one for each size matched filter; nevertheless, the performance for several threshold combina-
tions can easily be determined. The corresponding I)J?A points arc shown in Figure 10 with
X’S. Observe that the size-binned matched filter improves only slightly upon the performance
of the single-scale matched filter. The size-binned algorithm, however, requires considerably
more computation time, is more cliflcult  to synthesize, and has more parameters to adjust
than the single-scale version. Hence, wc continue to use the single-scale matched filter as the
baseline focus of attention algorithm.

Like the size-binned matched filter, the probability-weighted matched filter did not yield
any improvement in performance over the original matched filter. In fact, the probability-
weighted filter performed slightly worse,

Next we evaluated the end-to-end performance of the baseline algorithm. Rccal] that
each candidate 1101 is mapped from pixel space to feature space by measuring the values
of the features that were learned by the FL stage during training. Candidates arc then
classified as volcano or not-volcano by the quadratic (Gaussian) classifier of Section 5.3.

The overall performance of the baseline algorithm is presented ill Figure 11. ‘1’he perfor--
mance is shown for two cases: ( 1 ) six features and (2) two features. The performance with
six features is approaching that of the scientists for this task. In particular, the algorithm
detection rate is clearly within  10% of Scientist 13’s detection rate at the same false alarm
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Performance of FOA and Individual Scientists vs Consensus

Figure 10: The
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asterisks show the labeling performance of three scientists, who are all
familiar with the Magellan data and with the appearance of volcanoes in the data. Their
I)I?A points define the performance level we are trying to achieve with our algorithms. The
focus of attention algorithm is shown as the solid line. The FOA threshold was selected to
establish an operating point with a low rate of missed volcanoes. At this operating point
the FOA detects all Category 1 and Category 2 volcanoes. Two variants of the matched
filter were also studied — a size-binned matched filter bank and a weighted matched filter
constructed using the scientists subjective probability labels.

rate.
Also shown on Figure 11 is the I?OA curve. One might be curious as to whether the

whole volcano labeling task could have been performed using the matched filter (as in [11]).
This figure clearly shows, however, that the FOA alone is significantly worse than the com-
bination of an aggressive FOA followed by classification. This raises an interesting question.
Since the features learned by the FL stage are linear filters, these features could be com-
puted at every  pixel in an image simply by convolution. The classification algorithm could
then attempt to classify each pixel as volcano or non-volcano. How would the performance
of the classifier-only algorithm compare to the FOA-classifier  combination? If there is an
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UsingFigure 11: Performance of the overall algorithm compared to individual scientists.
the Gaussian classifier with 6 SVD features yields performance that is close to that of the
scientists. The performance using just 2 SVII features is somewhat worse, but still better
than the matched filter alone.

improvement in performance, would it be substantial enough to offset the significant increase
in computational costs? We intend to address these questions in future research.

Another question that arises is whether the detection vs false alarm rate (D17A) curves can
be parameterized in some manner that will provide summary statistics by which different al-
gorithms can be compared. We have derived the result that under moderate assumptions, the
I)I?A curves can be expressed as a function of two parameters r and v. The key assumption
is that an algorithm makes decisions based on a scalar quantity (e.g., the log-likelihood dis-
criminant function), which is class-conditionally Gaussian distributed. Designating (Ill,  al)
and (p2, 02) as the class-conditional Gaussian parameters for volcanoes and non-volcanoes
respectively, we can define T and v as follows:

p] –  p2—.— (8)
u

01— (9)
U2
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The theoretical DFA function is then given approximately by:

dz
100*

(1 + pn(w -1))$
(lo)

where d is the detection rate, f is the false alarm rate (both expressed in the usual way
as percentages relative to the total number of volcanoes 1{), a is a constant approximately
equal to 2.4/fi,  and N1 ,Nz are the number of volcanoes and false alarms out of the l?OA.
We have found that Equation 10 provides an excellent fit to our experimentally-obtained
I)FA curves. The best-fit values of v and r can be used to characterize the empirical DFA
curves more compactly, which is useful when comparing many DFA curves. We now use this
method in an empirical study to determine how many SVD features give the best detection
performance.

Figure 11 indicates that using six SVD features provides better classification than two
feat ures. This result was to be expected based on the singular value decay curve shown
in Figure 8. Clearly, more than two of the singular values have significant energy; the
right number of features appears to be between six and ten. We performed an experiment to
determine empirically how many SW]  features would yield the best performance. The results
are shown in two different ways. Figure 12-left shows the measured detection rate versus
the number of SVD components at a few selected false alarm rates. Figure 12-right shows
the fitted DFA performance parameters v and r. Notice that v (defined in Equation 8) is
relatively flat across the whole range of svd number, although it is somewhat better between
4 and 13. The r parameter is also better (in this case smaller), between 4 and 13. Since
both the detection curves and fitted-parameters are quite flat over range of svd features, we
conclude that the performance is relatively insensitive to the exact number of features, as
long as at least four are used. Beyond ten features, the classifier may recognize that the
features are very noisy and don’t carry much information, which explains the flatness of the
curves versus number of features. I-Iowever, if too many noisy features are includecl,  the
performance begins to degrade.

We have performed a preliminary experiment to determine whether using the scientists
subjective labels in feature learning would.yield an improvement in performance. The results
shown in Figure 13 indicate that the performance actually degraded slightly. (We also
found the same result when using the probabilities for FOA).  There are several possible
explanations that we are investigating. The subjective probabilities stated by the scientists
may be uncalibrated. We are examining whether these probabilities can bc determined
based on labeling experiments. When scoring the algorithms, we treat all categories in the
consensus as true volcanoes; however, in training the weighting emphasizes features that are
useful for category 1 and category 2. The end result may bc that we do better classifying the
good volcanoes
contributing to

but worse on the marginal ones. Finally, small sample size may be a factor
the degraded performance.
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Figure 12: Performance versus number of SVD features. Left graph is empirically measured
performance showing detection rates vs number of features at a few selected false alarm
rates. Second graph shows parameters fitted to DFA curves as a function of the number of
features used. Note that big nu and small r corresponds to the best performance.

Figure 13: Performance of the SVD algorithm when features are learned using probabilistic
weighings determined by the scientists’ subjective labels. The performance is not as good
as for the deterministic strategy; refer to the discussion in the text.

7 Discussion and conclusion

We have developed system for locating patterns in geographical images, The system, which
is based on the classical techniques of linear filtering and supervised classification, is trained
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by clicking a mouse on examples of the objects of interest. The system is being applied
to the problem of locating small volcanoes in the Magellan  SAR imagery of Venus. Tests
conducted on four images containing w 160 volcanoes show that our algorithm is performing
nearly as well as trained human observers.

To summarize the results of our research so far:

1.

2.

3.

4.

5.

A simple feature extraction scheme based on principal component analysis of training
data is successful in a visual pattern recognition application with relatively featureless
geographical patterns.

The number of features required to achieve best performance is small, around 6.

Considerable speedup of computations may be achieved using a l-filter region-of-
interest detector.

The training examples supplied by human experts may be quite unreliable; we have
presented a methodology for measuring and for overcoming this problem.

Classification based on features may be performed by a cheap and well-understood
Gaussian classifier, as opposed to more co-replicated perception; and decision trees.

The ultimate goal of our research is to develop a system that can easily be ported to
new visual pattern recognition problems merely by supplying it with a new set of exam-
ples. Despite our initial success on the volcano problem, we believe that a number of issues
remain to be solved before we can generalize to substantially different dataset types. Achiev-
ing invariance to translation, scaling, rotation, and illumination without renouncing to the
advantages of filter-based processing is fundamental. Making use of Iocal  ‘feature’-type in-
formation, making use of counter-examples, and allowing the scientists to enter “hints” , e.g.
find this object at any scale, are other open-issues one would like to resolve and incorporate
into a domain-independent pattern recognition system.
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